如何直观地解释 back propagation 算法?

关注者
2,366
被浏览
160,729

53 个回答

收录于 编辑推荐 ·
BackPropagation算法是多层神经网络的训练中举足轻重的算法。
简单的理解,它的确就是复合函数的链式法则,但其在实际运算中的意义比链式法则要大的多。
要回答题主这个问题“如何直观的解释back propagation算法?” 需要先直观理解多层神经网络的训练。

机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定一些样本点,用合适的曲线揭示这些样本点随着自变量的变化关系。

深度学习同样也是为了这个目的,只不过此时,样本点不再限定为(x, y)点对,而可以是由向量、矩阵等等组成的广义点对(X,Y)。而此时,(X,Y)之间的关系也变得十分复杂,不太可能用一个简单函数表示。然而,人们发现可以用多层神经网络来表示这样的关系,而多层神经网络的本质就是一个多层复合的函数。借用网上找到的一幅图[1],来直观描绘一下这种复合关系。

其对应的表达式如下:

上面式中的Wij就是相邻两层神经元之间的权值,它们就是深度学习需要学习的参数,也就相当于直线拟合y=k*x+b中的待求参数k和b。

和直线拟合一样,深度学习的训练也有一个目标函数,这个目标函数定义了什么样的参数才算一组“好参数”,不过在机器学习中,一般是采用成本函数(cost function),然后,训练目标就是通过调整每一个权值Wij来使得cost达到最小。cost函数也可以看成是由所有待求权值Wij为自变量的复合函数,而且基本上是非凸的,即含有许多局部最小值。但实际中发现,采用我们常用的梯度下降法就可以有效的求解最小化cost函数的问题。

梯度下降法需要给定一个初始点,并求出该点的梯度向量,然后以负梯度方向为搜索方向,以一定的步长进行搜索,从而确定下一个迭代点,再计算该新的梯度方向,如此重复直到cost收敛。那么如何计算梯度呢?

假设我们把cost函数表示为H(W_{11}, W_{12}, \cdots , W_{ij}, \cdots, W_{mn}), 那么它的梯度向量[2]就等于\nabla H  = \frac{\partial H}{\partial W_{11} }\mathbf{e}_{11} + \cdots + \frac{\partial H}{\partial W_{mn} }\mathbf{e}_{mn}, 其中\mathbf{e}_{ij}表示正交单位向量。为此,我们需求出cost函数H对每一个权值Wij的偏导数。而BP算法正是用来求解这种多层复合函数的所有变量的偏导数的利器

我们以求e=(a+b)*(b+1)的偏导[3]为例。
它的复合关系画出图可以表示如下:
在图中,引入了中间变量c,d。

为了求出a=2, b=1时,e的梯度,我们可以先利用偏导数的定义求出不同层之间相邻节点的偏导关系,如下图所示。
利用链式法则我们知道:
\frac{\partial e}{\partial a}=\frac{\partial e}{\partial c}\cdot \frac{\partial c}{\partial a}以及\frac{\partial e}{\partial b}=\frac{\partial e}{\partial c}\cdot \frac{\partial c}{\partial b}+\frac{\partial e}{\partial d}\cdot \frac{\partial d}{\partial b}

链式法则在上图中的意义是什么呢?其实不难发现,\frac{\partial e}{\partial a}的值等于从a到e的路径上的偏导值的乘积,而\frac{\partial e}{\partial b}的值等于从b到e的路径1(b-c-e)上的偏导值的乘积加上路径2(b-d-e)上的偏导值的乘积。也就是说,对于上层节点p和下层节点q,要求得\frac{\partial p}{\partial q},需要找到从q节点到p节点的所有路径,并且对每条路径,求得该路径上的所有偏导数之乘积,然后将所有路径的 “乘积” 累加起来才能得到\frac{\partial p}{\partial q}的值。

大家也许已经注意到,这样做是十分冗余的,因为很多路径被重复访问了。比如上图中,a-c-e和b-c-e就都走了路径c-e。对于权值动则数万的深度模型中的神经网络,这样的冗余所导致的计算量是相当大的。

同样是利用链式法则,BP算法则机智地避开了这种冗余,它对于每一个路径只访问一次就能求顶点对所有下层节点的偏导值。
正如反向传播(BP)算法的名字说的那样,BP算法是反向(自上往下)来寻找路径的。

从最上层的节点e开始,初始值为1,以层为单位进行处理。对于e的下一层的所有子节点,将1乘以e到某个节点路径上的偏导值,并将结果“堆放”在该子节点中。等e所在的层按照这样传播完毕后,第二层的每一个节点都“堆放"些值,然后我们针对每个节点,把它里面所有“堆放”的值求和,就得到了顶点e对该节点的偏导。然后将这些第二层的节点各自作为起始顶点,初始值设为顶点e对它们的偏导值,以"层"为单位重复上述传播过程,即可求出顶点e对每一层节点的偏导数。

以上图为例,节点c接受e发送的1*2并堆放起来,节点d接受e发送的1*3并堆放起来,至此第二层完毕,求出各节点总堆放量并继续向下一层发送。节点c向a发送2*1并对堆放起来,节点c向b发送2*1并堆放起来,节点d向b发送3*1并堆放起来,至此第三层完毕,节点a堆放起来的量为2,节点b堆放起来的量为2*1+3*1=5, 即顶点e对b的偏导数为5.

举个不太恰当的例子,如果把上图中的箭头表示欠钱的关系,即c→e表示e欠c的钱。以a, b为例,直接计算e对它们俩的偏导相当于a, b各自去讨薪。a向c讨薪,c说e欠我钱,你向他要。于是a又跨过c去找e。b先向c讨薪,同样又转向e,b又向d讨薪,再次转向e。可以看到,追款之路,充满艰辛,而且还有重复,即a, b 都从c转向e。

而BP算法就是主动还款。e把所欠之钱还给c,d。c,d收到钱,乐呵地把钱转发给了a,b,皆大欢喜。
------------------------------------------------------------------
【参考文献】
[1] 技术向:一文读懂卷积神经网络CNN
[2] Gradient
[3] colah.github.io/posts/2
其他推荐网页:
1. tensorflow.org 的页面
2. Neural networks and deep learning
更新于2016年10月7日:

国庆回来发现这答案有200多赞了,并且有带疑问的评论,有必要更新补充一下……

当初回答这个问题是因为2015年4月的时候,这个问题下的答案大都是“不就是链式求导法则嘛”这种一句话答案。我觉得这种答案对于提问题的人来说没有任何帮助,题主想要的是个直观的答案,所以就去搜了个直观的答案放在这里并注明了转载,然后就放在这里了。现在回过头来看看也不是很负责任。

首先说这个图解的优点:先形象说明了forward-propagation,然后说明了error backward-propagation,最后根据误差和梯度更新权重。没错这是backprop,又非常直观,但是从前的backprop了。

backprop的发展路线大概是,1974年有个Harvard博士生Paul Werbos首次提出了backprop,不过没人理他,1986年Rumelhart和Hinton一起重新发现了backprop,并且有效训练了一些浅层网络,一下子开始有了名气。那个时候的backprop从现在看来并不是个很清晰的概念,把梯度和更新一块打包了,从这点看来和我贴出来的图是一回事。如果有看过mitchell机器学习教材的同学可能也会觉得下面的图眼熟。

随着神经网络的继续发展,到了深度学习大行其道的今天,更新权值的思路其实变得更简单粗暴了。概括一下就是,把原来打包式的做法拆开成了1)求梯度;2)梯度下降。所以现在我们再提到backprop,一般只是指第一步:求梯度。这就是为什么好多答案直接说就是个链式法则,因为确实就是链式法则。

不过个人觉得还是有可以直观理解的一些点:

1)链式法则的直观理解的,之所以可以链式法则,是因为梯度直观上理解就是一阶近似,所以梯度可以理解成某个变量或某个中间变量对输出影响的敏感度的系数,这种理解在一维情况下的直观帮助可能并不是很大,但是到了高维情况,当链式法则从乘法变成了Jacobian矩阵乘法的时候,这个理解起来就形象多了。神经网络中的链式法则恰好都几乎是高维的。

2)Computational graph。最高票答案和 @龚禹pangolulu 的答案中都有提到,就不赘述,其实就是计算代数中的一个最基础办法,从计算机的角度来看还有点动态规划的意思。其优点是表达式给定的情况下对复合函数中所有变量进行快速求导,这正好是神经网络尤其是深度学习的场景。现在主流深度学习框架里的求导也都是基于Computational Graph,比如theano,torch和tensorflow,Caffe也可以看做是computaiona graph,只不过node是layer。

总结:图中的确实是backprop,但不是深度学习中的backprop,不过backward的大体思想是一样的,毕竟误差没法从前往后计算啊。

=========== update: 2016.10.7 ===========

原答案:

这大概是题主想要的吧(多图):
源地址:http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html